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Summary

This report studies the effects of fractional dynamics in
chaotic systems. In particular, Chua’s system is modified to
include fractional order elements. Varying the total system
order incrementally from 2.6 to 3.7 demonstrates that systems
of “order” less than three can exhibit chaos as well as other
nonlinear behavior. This effectively forces a clarification of the
definition of order which can no longer be considered only by
the total number of differentiations or by the highest power of
the Laplace variable.

Introduction

It is well known that chaos cannot occur in continuous-time
systems of order less than three. This assertion is based on the
usual concepts of order, such as the number of states in a
system, the highest power of the Laplace variable, s, in the
system, or the total number of separate differentiations or
integrations in a system. Unfortunately, these concepts of order
do not directly relate to systems having fractional order com-
ponents. The purpose of this report is to demonstrate that
systems of order less than three, as defined in the usual way, can
still display chaotic behavior. The next section provides a brief
review of fractional calculus. Useful approximations for these
fractional operators follow. Finally, an example is given which
demonstrates that systems of order less than three can display
chaos. This is both shown experimentally via simulations and
predicted analytically using the describing function method.

Review of Fractional Operators

The idea of fractional integrals and derivatives has been
known since the development of the regular calculus, with the

first reference probably being associated with Leibniz in 1695
(Oldham and Spanier, 1974, page 3). Although not well known
to most engineers, the fractional calculus has been considered
by prominent mathematicians (Courant and Hilbert, 1953) as
well as the “engineers” of the operational calculus (Heaviside,
1971; and Bush, 1929). In fact several textbooks written before
1960 have some small section on fractional calculus (Goldman,
1949; Holbrook, 1966; Starkey, 1954; Carslaw and Jeager,
1948; Scott, 1955; and Mikusinski, 1959). An outstanding
historical survey can be found in Oldham and Spanier (1974)
who also give what is unquestionably the most readable and
complete mathematical presentation of the fractional calculus.
Other bound discussions of the area are given by Ross (1975),
McBride (1979), and McBride and Roach (1985). Unfortu-
nately, many of the results in the fractional calculus are given
in the language of advanced analysis and are not readily
accessible to the general engineering community.

Many systems are known to display fractional order dynam-
ics. Probably the first physical system to be widely recognized
as one demonstrating fractional behavior is the semi-infinite
lossy (RC) line. The current into the line is equal to the half-
derivative of the applied voltage; that is, the impedence is

V s
s

I s( ) ( )= 1

Although this system was studied by many, Heaviside (1971)
considered it extensively using the operational calculus. He
states “there is a universe of mathematics lying in between the
complete differentiations and integrations” and that “fractional
(operators) push themselves forward sometimes, and are just as
real as the others.”  Another equivalent system is the diffusion
of heat into a semi-infinite solid. Here the temperature looking
in from the boundary is equal to the half integral of the heat rate
there. Other systems that are known to display fractional order
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dynamics are viscoelastic systems (Bagley and Calico, 1991;
Koeller, 1984; Koeller, 1986; Skaar, Michel, and Miller, 1988;
Lopez-Marcos, 1990); colored noise (Mandelbrot, 1967); elec-
trode-electrolyte polarization (Ichise, Nagayanagi, and Kojima,
1971; Sun, Onaral, and Tsao, 1984); dielectric polarization
(Sun, Abdelwahab, and Onaral, 1984); boundary layer effects
in ducts (Sugimoto, 1991); and electromagnetic waves
(Heaviside, 1971). Because many of these systems depend
upon specific material and chemical properties, it is expected
that a wide range of fractional order behaviors are possible
using different materials.

Two commonly used definitions for the general fractional
differintegral are the Grunwald definition and the Riemann-
Liouville definition (Oldham and Spanier, 1974). The Ri-
emann-Liouville definition of the fractional integral is given
here as

d f

dt q

f

t
d q

q

q q

t
=

− −
<+∫1

010Γ( )

( )

( )
,

τ
τ

τ

where q can have noninteger values, and thus the name frac-
tional differintegral. Notice that the definition is based on
integration and more importantly is a convolution integral for
q < 0. When q > 0, then the usual integer nth derivative must be
taken of the fractional (q – n)th integral, and yields the frac-
tional derivative of order q as
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This appears so vastly different from the usual intuitive defini-
tion of derivative and integral that the reader must abandon the
familiar concepts of slope and area and attempt to get some new
insight (which still remains elusive). This is discussed further
in Lorenzo, C.F.; and Hartley, T.T.: On Conceptualization,
Initialization, and Applications in Fractional Calculus (to be
published).

Fortunately, the basic engineering tool for analyzing linear
systems, the Laplace transform, is still applicable and works as
one would expect; that is,
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where n is an integer such that n – 1 < q < n (Oldham and
Spanier, 1974). If the initial conditions are considered to be
zero, this formula reduces to the more expected and comforting
form
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Amazingly enough, one of the most difficult obstacles in the
practical application of the fractional calculus is the initial
condition problem. As long as a given system is at rest, at the
zero equilibrium, at time zero, the fractional initial value
problem is readily solved using standard Laplace transform
methods (all initial condition terms are zero). Unfortunately,
the fractional derivative operator starts rather abruptly at time
zero, so that any nonzero initial value for a function will appear
as a discontinuity and translate directly into a  t–r  term, which
has an annoying singularity at time zero using the appropriate
power, r. This is not necessarily a problem, unless the desired
initial value is not infinity. Bagley (1988) addresses this prob-
lem by creating a modified fractional derivative operator that
essentially subtracts out the singularity. The problem is further
studied by Hartley, T.T.; and Lorenzo, C.F.: Insights Into the
Fractional Initiative Value Problems (to be published) by
relating it back to the semi-infinite line problem.

Bagley (1988) has also extended the initial value problem to
fractional state space systems. Here the idea of state no longer
gives all past and future knowledge of the system behavior via
some stored pseudo-energy. In fact, the number of these frac-
tional states is somewhat arbitrary and dependent only upon
what the user has chosen as the base fractional derivative.

Understanding the possible dynamic behavior of linear frac-
tional order systems is fundamental to the development of
future applications. Progress in this area has been fairly slow,
however, since there was no known general fractional order
impulse response with which to perform convolution.
Recently, Bagley (1988) has shown that the impulse responses
of fractional order systems are related to the Mittag-Leffler
function (Erdelyi, et al. 1955), which is effectively the frac-
tional order analog of the exponential function. With this
knowledge, it has been possible to better clarify the time
responses associated with fractional order systems. Impulse
responses, step responses, and initial condition responses for
some general fractional order systems can be found in Hartley,
T.T.; and Lorenzo, C.F.: The Solution to a General Linear
Fractional Order Initial Value Problem (to be published).

The Concept of System Order

As the concept of “order” is central to the understanding of
fractional systems, some discussion of this concept now fol-
lows. In this discussion, it will be assumed that the systems
being considered are single-input–single-output, that their
representations are minimal in the usual sense (Kailath, 1980),
and that they are linear.
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Approximation of Fractional Operators

The standard definitions of the fractional differintegral do
not allow direct implementation of the operator in time-domain
simulations of complicated systems with fractional elements.
Thus, in order to effectively analyze such systems, it is neces-
sary to develop approximations to the fractional operators
using the standard integer order operators. In the work that
follows, the approximations are effected in the Laplace s-
variable. The resulting approximations provide sufficient accu-
racy for time domain hardware implementations.

Some work has been done in this area already, but it has not
been highly organized. Oldham and Spanier (1974) and Piche
(1992) give several discrete-time approximations based on
numerical quadrature. In continuous time, engineers have used
network theory approximations (Carlson and Halijak, 1964;
Steiglitz, 1964; Carlson and Halijak, 1961; and Halijak, 1964).
More recently Oldham and Spanier (1974), Ichise, Nagayanagi,
and Kojima, 1971; and Charef, et al. (1992) have developed
other network theory approximations. Even more recently, a
discrete-time fractional calculus has been developed similar to
the theory of linear multistep methods for numerical integration
(Lubich, 1985, 1986, 1988a, and 1988b).

The approximation approach taken here is that of Charef, et
al. (1992). Basically the idea is to approximate the system
behavior in the frequency domain. This is done for a given q by
creating an approximation with Bode magnitude response roll
off of 20 times q db/dec, which will consequently have a phase
shift of approximately 90 times q degrees over the required
frequency band. This approximation is created by choosing an
initial breakpoint (the low frequency accuracy limit of the
approximation), the allowable error in db’s, and the number of
s-plane poles in the approximation. The high frequency limit of
the usable bandwidth can be varied by changing the allowable
error and the number of poles. Thus an approximation of any
desired accuracy over any frequency band can be achieved.
Table I gives approximations for 1/sq with q = 0.1 to 0.9 in
steps of 0.1. These were obtained by trial and error and are
reasonably good from 0.01 to 100 rad/sec. These approxima-
tions are used in the study that follows.

A Fractional Chua  System

Chua’s system is well known and has been extensively
studied. The particular form to be considered here was pre-
sented by Hartley (1989) and used further for the study of
Hartley and Mossayebi (1993). This system is different from
the usual Chua system in that the piecewise-linear nonlinearity
is replaced by an appropriate cubic nonlinearity which yields
very similar behavior. It is represented in state space form as

Mathematical order is defined as the highest derivative
occurring in a given differential equation. The concept of
mathematical order is applicable to both ordinary and fractional
differential equations. Normally, when the word “order” is
used without a qualifier, it implies the meaning of mathematical
order.

For linear dynamic systems that are described by ordinary
differential equations (i.e., of integer mathematical order), the
system mathematical order implies, or is equivalent to, the
following:

(1) The highest derivative in the ordinary differential
equation

(2) The highest power of the Laplace variable, s, in the
characteristic equation

(3) The number of initializing constants required for the
differential equation

(4) The number of singularities in the characteristic
equation

(5) The length of the state vector
(6) The number of energy storage elements
(7) The number of independent spatial directions in which

a trajectory can move
(8) The number of devices that add 90° sinusoidal steady

state phase lag
(9) The number of devices that retain some memory of the

past

The utility of the definition of mathematical order is that it
infers all the system characteristics for systems with only
integer order components.

Thus the benefit of having a definition for order for linear
ordinary differential equations is that it allows a direct under-
standing of the behavior of a given dynamic system. Unfortu-
nately, for fractional differential equations, the order of the
highest derivative does not infer (or is not equal to) all of the
previously mentioned properties. Indeed, the most important
characteristic of order in integer order ordinary differential
equations is probably item (3) in the previous list (i.e., it
dictates the number of initializing constants which together
with the differential equations allow prediction of the future
behavior). In systems terminology, this information provides
the initial “state” of the system being analyzed. Clearly, the
order of the highest derivative in a fractional differential equa-
tion does not have this property, nor does it predict the associ-
ated number of energy/memory elements associated with the
fractional differential equation, nor does it infer the number of
integrations (even fractional) required to solve or simulate the
given fractional differential equation. Thus the issue of order
and the information required together with the fractional differ-
ential equation to predict future behavior is fundamental and is
expected to be treated in detail at a later time.
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prohibited a timely calculation of any exponents but the first.
Since the order of this system was greater than three, these
calculations were not pursued. In all cases, the one positive
exponent clearly indicated that the system was behaving cha-
otically. The numerical simulations also indicated that the
lower limit of the vector fractional derivative q was between
0.8 and 0.9 for this system to remain capable of generating
chaos.  The lowest value obtained for mathematical order to
yield chaos was 2.7 using the q = 0.9 fractional vector deriva-
tive. No upper limit was obtained. Phase plane plots for these
systems are given in figure 2.

Feedback Configuration

The feedback configuration is now considered. To change
the total system mathematical order, the separated 1/s in figure
1(b) was allowed to change powers, that is,

1 1

s sq→

A variety of simulations were performed on the resulting
systems as discussed subsequently. Here, the approximations
from table I were used to represent the fractional integral where
again the approximations for 1/sq, when q > 1, were obtained
by using 1/s times the approximation for 1/sq–1.

Bifurcation diagrams for several of these systems are given
in figure 3. Here, a particular value of q was chosen, and the
parameter  was varied to obtain the particular bifurcation plot.
These diagrams were generated by simulation using Euler’s
method and a simulation timestep of 0.001. These were veri-
fied by further reducing the timestep by an order of magnitude
with little change in the overall bifurcation structure. To obtain
these diagrams, the values of the output x-variable were plotted
whenever its slope changed sign. Although it is believed that
the bifurcation diagrams are reasonably accurate and are
sufficiently accurate for this particular study, more correct
diagrams could possibly be obtained by using more accurate
approximations of the fractional derivative than those given in
table I or a more accurate simulation. Observation of the
bifurcation diagrams indicates behavior similar to that from
the state space study. For the feedback configuration, decreas-
ing the power of s shifts the bifurcation diagram to the right as
a function of α, while the converse is also true. The limits on
the system mathematical order to have a chaotic response as
measured from the bifurcation diagrams are approximately 2.5
< n < 3.8. The overall behavior from the simulation studies is
summarized in figure 4.

An advantage to the feedback configuration is that it allows
easy system analysis using describing functions, as discussed
in Hartley and Mossayebi (1993). Here the idea is that the
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It is studied here in two different system representa-
tions as discussed in the following sections. In all cases studied,
β is defined to be 100/7 and α is allowed to vary.

State Space Configuration

To study the effect of fractional derivatives on the dynamics
of this system,  the state space configuration (fig. 1(a)) was
considered first. Here, the vector derivative was replaced by a
vector fractional derivative as follows:

d x

dt
y

x x

7

d y

dt
x y z

d z

dt

y
y

q

q

q

q

q

q

= + −











= − +

= − = −

α

β

2

100

7

3

Simulations were then performed using q = 0.8, 0.9, 1.0, and
1.1. The approximations from table I were used for the simula-
tions of the appropriate qth integrals. When q < 1, then the
approximations were used directly. It should further be noted
that approximations used in the simulations for 1/sq, when
q > 1, are obtained by using 1/s times the approximation for
1/sq–1 from table I.

The results from this state space study verified that chaos
could indeed occur in a system of mathematical order less than
3. This was determined by computing the Lyapunov exponents
for each of the simulations with q = 0.9, 1.0, and 1.1, using the
method of Benettin, et al. (1990). Chaos is indicated when any
of the Lyapunov exponents is greater than zero. These results
are given in table II where the largest Lyapunov exponents are
given as a function of system order. In each case, the second
exponent was near zero. The 2.7 order system approximation
had an additional six negative exponents which were not listed.
Also the 3.3 order system approximation was so large that it
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frequency response of the linear block in the feedback configu-
ration is plotted in the Nyquist plane, together with minus one
over the appropriate describing function of the nonlinearity, as
in figure 5. The fractional order integral in the loop is handled
directly by taking the frequency response on the primary
Riemann sheet and essentially poses no complication or confu-
sion in application of the describing function approach. In other
words, the fact that fractional powers of s are present does not
require any frequency domain approximation as in the time-
domain simulation; rather the fractional powers of s can be used
as is in computing the frequency response of the linear block.
In Hartley and Mossayebi (1993), it is shown that the important
points from the nonlinearity of this system in the Nyquist plane
are

(1) Re[H(jω))] > –3.5, Im[H(jω)] = 0, which indicates two

stable points at x = ± 0 5. .
(2) Re[H(jω))] ≤ –3.5, Im[H(jω)] = 0, which indicates a

Hopf bifurcation of the stable points of item (1) into a limit
cycle.

(3) Re[H(jω))] ≤ –7, Im[H(jω)] = 0, which indicates that
period doubling of the limit cycle of item (2) occurs (this
progresses into spiral chaos).

(4) Re[H(jω))] ≤ –14, Im[H(jω)] = 0, which indicates merg-
ing of the spiral chaos into the double scroll behavior.

Extinction of the double scroll (meaning its disappearance) is
not directly predicted using the describing function approach,
but a reasonable approximate value is Re[H(jω))] ≤ –23,
Im[H(jω)] = 0. A diagram indicating the usage of the describing
function is given in figure 5.

Using these results and varying the power of the integrator in
the loop allowed a theoretical prediction of the simulation re-
sults of figure 4. These theoretical results are given in figure 6.
It should be noted that the qualitative features are very well
predicted using the describing function approach, and that the
quantitative results are reasonably close. Furthermore, for
mathematical system order less than approximately 2.85, the
describing function approach predicted the appearance of a
stable and unstable limit cycle as α increased (via an apparent
saddle node bifurcation). These limit cycles coexist with each
of the stable fixed points. Eventually, as α increased further, the
unstable cycles merged with the stable fixed points via a
subcritical Hopf bifurcation, leaving unstable fixed points.
This entire process basically became a supercritical Hopf
bifurcation for mathematical order greater than 2.85. This was
then verified in the simulations with this bifurcation structure
occurring for mathematical system order less than approxi-
mately 2.75. In fact, for the mathematical order equal to 2.6, the
simulation showed the points at x = ± 0 5.  to be stable and
each coexisting with spiral chaos. It  is a true testament to the
utility of the describing function approach that it could predict
the behavior of this system as accurately as it does.

Concluding Remarks

This report has introduced the idea of fractional derivatives
from the dynamic systems viewpoint. It has been demonstrated
that the usual idea of system order must be modified when
fractional derivatives are present. The usual approach of calcu-
lating the mathematical system order by determining the
highest derivative in the system does not work in this situation.

It  has been further demonstrated that chaos, as well as the
other usual nonlinear dynamic phenomena, can occur in sys-
tems with mathematical order less than three via Chua’s
system. This is surprising given the usual nonlinear system
paradigms concerning chaos and order. It is not clear at this
point whether the chaos in fractional order systems should be
characterized differently than chaos in regular integer order
systems.

It should be noted that the describing function approach
usually requires at least –180° of phase shift in the linear part
of the feedback loop to ever predict Hopf bifurcations, and
consequently chaos, for memoryless nonlinearities. Because
the linear part can be a nonminimum phase transfer function,
it is further conjectured that chaos can occur in systems with
mathematical order less than three and probably less than one.
Furthermore, the feedback configuration indicates that, as long
as the linear part of the loop has at least –180° of phase shift,
the possibility of chaos in the system depends primarily on the
nonlinearity and how its particular describing function be-
haves.

As has been demonstrated, the idea of fractional derivatives
requires one to reconsider dynamic system concepts that are
often taken for granted. Some of these concepts have been
discussed in this report. Some others that require much further
consideration are the concept of Lyapunov exponents for
fractional states, the use of fractional states in which to embed
attractors, and the relationship between fractional order and
fractal dimension.

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135, June 30, 1995
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Order of system
approximation

9
3
18

α-used

12.75
9.50
7.00

ExponentsMathematical
system order

2.7
3.0
3.3

λ1

0.338
0.248
0.318

λ2

–0.000201
–0.00412

(a)

λ3

–0.132
–3.07

(a)

TABLE II.—LARGEST LYAPUNOV EXPONENTS FOUND IN THE
STATE SPACE CONFIGURATION FOR q = 0.9, 1.0, AND 1.1

WHICH GIVES A TOTAL SYSTEM MATHEMATICAL
ORDER OF 2.7, 3.0, AND 3.3, RESPECTIVELY

aThese values were not calculated.

TABLE I.—FRACTIONAL OPERATORS WITH APPROXI-
MATELY 2 db ERROR FROM w = 10–2 TO 102 rad/sec

1 220 4 5004 5038 234 5 0 4840

359 8 5742 4247 147 7 0 2099

1 60 95 816 9 582 8 23 24 0 04934

134 0 956 5 383 5 8 953 0 01821

0 1

4 3 2

5 4 3 2

0 2

4 3 2

5 4 3 2

s

s s s s

s s s s s

s

s s s s

s s s s s

.

.

. . .

. . .

. . . . .

. . . . .

≈
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Figure 2.—Phase plane projections for the state space configuration of Chua's system.

   (t = 200, ∆T = 0.05.) (a) Total mathematical system order is 3.0, a = 9.5. (b) Total
   mathematical system order is 3.0, a = 9.5.
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Figure 2.—Continued. Phase plane projections for the state space configuration of
   Chua's system. (t = 200, ∆T = 0.05.) (c) Total mathematical system order is 3.0, a = 9.5.
   (d) Total mathematical system order is 2.7, a = 12.75.
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Figure 2.—Continued. Phase plane projections for the state space configuration of
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   a = 12.75. (f) Total mathematical system order is 2.7, a = 12.75.
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   mathematical system order is 3.3, a = 7.0.
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Figure 2.—Concluded. Phase plane projections for the state space configuration of Chua's
   system. (t = 200, ∆T = 0.05.) (i) Total mathematical system order is 3.3, a = 7.0.
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Figure 6.—Bifurcation diagram in the a versus system mathematical order plane based on
   describing function analysis of the fractional Chua system. Note that the saddle-node and
   subcritical Hopf merge at 2.85.
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